El siguiente código simula un proceso de regresión lineal de aprendizaje automático.

Su objetivo es permitir al usuario hacer la regresión manual y visualmente en un cuaderno Jupyter para tener una mejor idea del proceso de regresión lineal.

La primera sección (x, y) de la función genera un gráfico para realizar la regresión.

La siguiente sección (a, b) genera la línea para jugar, para la regresión simulada.

Quiero poder cambiar el control deslizante de pendiente sin que se regenere el diagrama de dispersión.

Cualquier orientación será muy útil y bienvenida. :-)

import numpy as np
import ipywidgets as widgets
from ipywidgets import interactive
import matplotlib.pyplot as plt    

def scatterplt(rand=3, num_points=20, slope=1):

    x = np.linspace(3, 9, num_points)
    y = np.linspace(3, 9, num_points)

    #add randomness to scatter
    pcent_rand = rand
    pcent_decimal = pcent_rand/100
    x = [n*np.random.uniform(low=1-pcent_decimal, high=1+ pcent_decimal) for n in x]
    y = [n*np.random.uniform(low=1-pcent_decimal, high=1+ pcent_decimal) for n in y]

    #plot regression line
    a = np.linspace(0, 9, num_points)
    b = [(slope * n) for n in a]

    #format & plot the figure
    plt.figure(figsize=(9, 9), dpi=80)
    plt.ylim(ymax=max(x)+1)
    plt.xlim(xmax=max(x)+1)

    plt.scatter(x, y)

    plt.plot(a, b)

    plt.show()


#WIDGETS    

interactive_plot = interactive(scatterplt, 
                 rand = widgets.FloatSlider(
                                value=3,
                                min=0,
                                max=50,
                                step=3,
                                description='Randomness:', num_points=(10, 50, 5)
                                ),
                 num_points = widgets.IntSlider(
                                value=20,
                                min=10,
                                max=50,
                                step=5,
                                description='Number of points:'
                                ),
                 slope=widgets.FloatSlider(
                                value=1,
                                min=-1,
                                max=5,
                                step=0.1,
                                description='Slope'
                                )

                )

interactive_plot
2
Axle Max 8 sep. 2018 a las 22:13

3 respuestas

La mejor respuesta

La función interactive realmente no le da acceso a este nivel de granularidad. Siempre ejecuta la devolución de llamada scatterplt completa. Básicamente, el objetivo de interactive es hacer que una clase de problemas sea realmente fácil: una vez que salga de esa clase de problemas, no será realmente aplicable.

Luego debe recurrir al resto de la maquinaria del widget. Esto puede ser un poco difícil de entender inicialmente, por lo tanto, para minimizar el salto, comenzaré explicando qué hace interactive debajo del capó.

Cuando llama a interactive(func, widget), crea widget y vincula una devolución de llamada cada vez que cambia widget. La devolución de llamada se ejecuta func en un widget Output (docs). El widget Output captura la salida completa de func. interactive luego empaqueta widget y el widget de salida en un VBox (un contenedor para apilar widgets).

De vuelta a lo que quieres hacer ahora. Su aplicación tiene los siguientes criterios:

  1. necesitamos mantener alguna forma de estado interno: la aplicación necesita recordar las ubicaciones x e y de las variables aleatorias
  2. necesitamos un comportamiento diferente para ejecutar en función del control deslizante que se activó.

Para satisfacer (1), probablemente deberíamos crear una clase para mantener el estado. Para satisfacer (2), necesitamos diferentes devoluciones de llamada para ejecutar en función de cómo se llamó el control deslizante.

Algo como esto parece hacer lo que necesitas:

import numpy as np
import ipywidgets as widgets
import matplotlib.pyplot as plt

class LinRegressDisplay:

    def __init__(self, rand=3.0, num_points=20, slope=1.0):
        self.rand = rand
        self.num_points = num_points
        self.slope = slope
        self.output_widget = widgets.Output()  # will contain the plot
        self.container = widgets.VBox()  # Contains the whole app
        self.redraw_whole_plot()
        self.draw_app()

    def draw_app(self):
        """
        Draw the sliders and the output widget

        This just runs once at app startup.
        """
        self.num_points_slider = widgets.IntSlider(
            value=self.num_points,
            min=10,
            max=50,
            step=5,
            description='Number of points:'
        )
        self.num_points_slider.observe(self._on_num_points_change, ['value'])
        self.slope_slider = widgets.FloatSlider(
            value=self.slope,
            min=-1,
            max=5,
            step=0.1,
            description='Slope:'
        )
        self.slope_slider.observe(self._on_slope_change, ['value'])
        self.rand_slider = widgets.FloatSlider(
            value=self.rand,
            min=0,
            max=50,
            step=3,
            description='Randomness:', num_points=(10, 50, 5)
        )
        self.rand_slider.observe(self._on_rand_change, ['value'])
        self.container.children = [
            self.num_points_slider,
            self.slope_slider,
            self.rand_slider ,
            self.output_widget
        ]

    def _on_num_points_change(self, _):
        """
        Called whenever the number of points slider changes.

        Updates the internal state, recomputes the random x and y and redraws the plot.
        """
        self.num_points = self.num_points_slider.value
        self.redraw_whole_plot()

    def _on_slope_change(self, _):
        """
        Called whenever the slope slider changes.

        Updates the internal state, recomputes the slope and redraws the plot.
        """
        self.slope = self.slope_slider.value
        self.redraw_slope()

    def _on_rand_change(self, _):
        self.rand = self.rand_slider.value
        self.redraw_whole_plot()

    def redraw_whole_plot(self):
        """
        Recompute x and y random variates and redraw whole plot

        Called whenever the number of points or the randomness changes.
        """
        pcent_rand = self.rand
        pcent_decimal = pcent_rand/100
        self.x = [
            n*np.random.uniform(low=1-pcent_decimal, high=1+pcent_decimal) 
            for n in np.linspace(3, 9, self.num_points)
        ]
        self.y = [
            n*np.random.uniform(low=1-pcent_decimal, high=1+pcent_decimal)
            for n in np.linspace(3, 9, self.num_points)
        ]
        self.redraw_slope()

    def redraw_slope(self):
        """
        Recompute slope line and redraw whole plot

        Called whenever the slope changes.
        """
        a = np.linspace(0, 9, self.num_points)
        b = [(self.slope * n) for n in a]

        self.output_widget.clear_output(wait=True)
        with self.output_widget as f:
            plt.figure(figsize=(9, 9), dpi=80)
            plt.ylim(ymax=max(self.y)+1)
            plt.xlim(xmax=max(self.x)+1)

            plt.scatter(self.x, self.y)
            plt.plot(a, b)
            plt.show()

app = LinRegressDisplay()
app.container  # actually display the widget

Como nota final, la animación sigue siendo un poco discordante cuando mueve los controles deslizantes. Para una mejor interactividad, sugiero mirar bqplot. En particular, Chakri Cherukuri tiene un excelente ejemplo de regresión lineal eso es algo similar a lo que estás tratando de hacer.

1
Pascal Bugnion 10 sep. 2018 a las 06:33

En lugar de usar interactive / interact también puede usar interact_manual (consulte los documentos para obtener más información). Lo que obtienes es un botón que te permite ejecutar manualmente la función una vez que estés satisfecho.

Necesitas estas dos líneas

from ipywidgets import interactive, interact_manual
interactive_plot = interact_manual(scatterplt,
...

La primera vez que lo ejecutes, deberías ver esto: ingrese la descripción de la imagen aquí

Después de hacer clic en el botón, le mostrará el resultado completo: ingrese la descripción de la imagen aquí

2
Maarten Breddels 10 sep. 2018 a las 07:29

Parte del problema es que es difícil modificar elementos individuales en una figura de Matplotlib, es decir, es mucho más fácil volver a dibujar todo el diagrama desde cero. Volver a dibujar toda la figura no será súper rápido ni suave. Entonces, en cambio, te estoy mostrando un ejemplo de cómo hacerlo en BQplot (como lo sugiere Pascal Bugnion). No es Matplotlib como supongo que probablemente querías, pero demuestra un método para separar la pendiente y las instrucciones y los cálculos de aleatoriedad de cada control deslizante individual mientras aún usas los widgets interactivos estándar.

enter image description here

import bqplot as bq
import numpy as np
import ipywidgets as widgets


def calcSlope(num_points, slope):
    a = np.linspace(0, 9, num_points)
    b = a * slope

    line1.x = a
    line1.y = b


def calcXY(num_points, randNum):
    x = np.linspace(3, 9, num_points)
    y = x

    #add randomness to scatter
    x = np.random.uniform(low=1-randNum/100, high=1+ randNum/100, size=(len(x))) * x
    y = np.random.uniform(low=1-randNum/100, high=1+ randNum/100, size=(len(y))) * y

    #format & plot the figure
    x_sc.min = x.min()
    x_sc.max = x.max() + 1

    scat.x = x
    scat.y = y        



def rand_int(rand):
    calcXY(num_i.children[0].value, rand)

def num_points_int(num_points):
    calcXY(num_points, rand_i.children[0].value)
    calcSlope(num_points, slope_i.children[0].value)

def slope_int(slope):
    calcSlope(num_i.children[0].value, slope)



rand_i = widgets.interactive(rand_int, 
                 rand = widgets.FloatSlider(
                                value=3,
                                min=0,
                                max=50,
                                step=3,
                                description='Randomness:', num_points=(10, 50, 5)
                                )
                              )


num_i = widgets.interactive(num_points_int, 
                 num_points = widgets.IntSlider(
                                value=20,
                                min=10,
                                max=50,
                                step=5,
                                description='Number of points:'
                                )
                              )


slope_i = widgets.interactive(slope_int, 
                 slope=widgets.FloatSlider(
                                value=1,
                                min=-1,
                                max=5,
                                step=0.1,
                                description='Slope'
                                )
                              )


# Create the initial bqplot figure
x_sc = bq.LinearScale()
ax_x = bq.Axis(label='X', scale=x_sc, grid_lines='solid', tick_format='0f')
ax_y = bq.Axis(label='Y', scale=x_sc, orientation='vertical', tick_format='0.2f')

line1 = bq.Lines( scales={'x': x_sc, 'y': x_sc} , colors=['blue'],display_legend = False, labels=['y1'],stroke_width = 1.0)
scat = bq.Scatter(scales={'x': x_sc, 'y': x_sc} , colors=['red'],display_legend = False, labels=['y1'],stroke_width = 1.0)


calcSlope(num_i.children[0].value, slope_i.children[0].value)
calcXY(num_i.children[0].value, rand_i.children[0].value)

m_fig = dict(left=100, top=50, bottom=50, right=100)
fig = bq.Figure(axes=[ax_x, ax_y], marks=[line1,scat], fig_margin=m_fig, animation_duration = 1000)

widgets.VBox([rand_i,num_i,slope_i,fig])
2
DougR 15 sep. 2018 a las 00:14